Emissions Technologies for Off-Highway Compression Ignition Engines.

Peter Church

February 3, 2000

AVL Powertrain Engineering

Largest Independent Powertrain Consulting Company

2400 employees worldwide

Privately owned

Total revenues more than \$300m

Based in Graz, Austria

US facility in Plymouth, MI

Business areas:

- Development of powertrain systems
- Instrumentation and test systems

US EPA Non-Road Diesel Emission Limits 75 - 450 kw

Test cycle and particulate limit to be reviewed by the EPA in 2001

NMHC+NOx /PM

Tier 1 Tier 2 Tier 3

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

AVL considers the following technologies to be feasible options for Tier 3 non-road emissions control:

- Cooled Exhaust Gas Recirculation
- Advanced fuel system technology
- Improved diesel fuel
- Exhaust aftertreatment

Bypass Flow Venturi Concept:

Characteristics:

- Venturi used to aid flow of exhaust gas to the intake manifold
- •EGR rates of 6-8%at intermediate speed
- Moderate EGR rates at rated speed
- Moderate to high heat rejection rate

Applications:

- Applications requiring good fuel economy
- •Engines with little or no injection rate control or aftertreatment

ADVANCED FUEL SYSTEMS - CAM DRIVEN TYPES

	Pump-Line-Nozzle Injection Systems			Unit
	Sleeve Timing In-Line Inj. Pump	High Pressure Rotary Pump	Unit Pump PL <mark>D</mark> -System	Injector Systems
		-		
Applicable Engine Class	medium- heavy duty	light- medium duty	light- heavy duty	light- heavy duty
Current Maximum Injection Pressure (bar)	1450	1400	1800	2200
Potential Maximum Injection Pressure (bar)	1600	1500	2200	2500
Natural Pressure Characteristic				
Injection Rate Mech.: Shaping Electron.:	Pre Inj. Helix (Pilot)	TSI, RSN -	TSI, RSN Pilot	TSI, SID, RSN Pilot
Development and Application Activity	medium	high	high	medium (EU) high (USA)
= Reference Injection Rate from In-Line Pump				

Unit pump and Unit injector systems are the preferred cam driven types:

- •Higher maximum injection pressure and favorable pressure characteristics
- Capable of pilot injection and "boot" injection

ADVANCED FUEL SYSTEMS - COMMON RAIL TYPES

Both systems will have similar capabilities:

- •Hydraulic intensifier system may prove advantageous if hydraulic power from the pump can be used with other vehicle systems. New digital valve types can provide pilot injection.
- •High pressure common rail system could share high volume with passenger car types, reducing cost

Electronic control provides many advantages at Tier 3 emissions levels:

- Reduced soot in oil for engines
- Improved cold starting
- Rating flexibility
- Reduced combustion noise

DIESEL ENGINE FUEL and PARTICULATES

Particulate reduction:

•Reduced sulfur content provides a direct reduction in particulates due to reduced sulfates in the particulate matter

For off-highway diesel engines, fuel sulfur level will be critical if aftertreatment is employed:

Particulate reduction:

- •CRT (Continuously regenerating trap) Requires fuel Sulfur levels below 50 ppm
- Oxidation catalyst Requires fuel Sulfur levels below 500 ppm

NOx Reduction:

•De-NOx catalysts using diesel fuel postinjection require fuel Sulfur levels below 10 ppm

FUEL ADDITIVE SUPPORTED REGENERATION

- •SCR (Selective Catalytic Reduction) -Requires a separate onboard supply of reducing agent.
- •OBD is required to indicate lack of additive and to control trap loading.
- Low Sulfur fuel is not required with SCR

Durability connects emissions reductions that are possible to emissions reductions that are practical. The main durability issues for Tier 3 are:

- EGR control component durability
- Turbocharger durability
- Soot loading in the lube oil
- Aftertreatment device durability